
36 The Delphi Magazine Issue 32

Under Construction:
A Query HTML CGI-Form Wizard
by Bob Swart

This month we’ll develop yet
another variant of TableBob,

my ‘table to source code or HTML’
wizard, to generate an HTML CGI-
Form that can be used to enhance
the Delphi 3 Web Modules. Tech-
niques that we’ll use along the way
include wizards/experts, compo-
nent editors and property editors,
plus a little internet programming.

Although this article ends with
an enhancement for Delphi 3’s Web
Modules, the resulting Query2CGI
wizard is also of great value with-
out Web Modules, as will become
clear shortly. However, for now, I
assume that you will know the
basics of Delphi 3 Web Modules (if
not, check Issues 24 and 25).

CGI-Forming
Back in Issue 25, I noted that it was
rather inconvenient that Delphi
supports all kinds of protocols
with the Web Modules, but we still
have to write our own HTML files to
hold the CGI forms. This is
especially irritating when using a
TQueryTableProducer together with

a Parameterised Query (where we
can automatically ‘connect’ a CGI
variable in the HTML page with a
Query parameter if they use the
same name). I used to have an
HTML CGI form ‘template’ lying
around, that I could customise. But
I felt I was missing something. So I
decided to build my own Query to
HTML CGI form wizard.

Query-2-HTML
In order to write our wizard, we
must first find out what data we
actually need. Of course, we need
the Query’s SQL statement (and

➤ Figure 1

probably the DatabaseName or Alias
as well). Next, we need some way
to specify which fields of the result
set must end up in the generated
HTML file. Finally, since we’re cre-
ating an HTML CGI form, we also
need to specify the Action and
Method of the FORM itself. These
three steps will be the starting
point for a wizard, using the TForm-
Wizard (see Issue 21) as a template.

When the first page of the wizard
is created we need to put a list of all
known BDE Database Aliases in the
drop-down combobox, by calling
the Session.GetAliasNames routine
in the FormCreate event:

procedure TFormWizard.FormCreate(

Sender: TObject);

begin

Session.GetAliasNames(

ComboBoxAliases.Items)

end;

Both the Next and the Prev button
are connected to the same event:
ButtonStepClick (Listing 1). The
only difference is that the Next
button has a Tag value of 1, and the
Prev button has a Tag value of -1.
The Tag value defines the ‘steps’ to
take, forwards or backwards.

If we click on the Next button for
the first time, we go to the second
page of the NoteBook (ie Note-
Book.PageIndex = 1), which means

procedure TFormWizard.ButtonStepClick(Sender: TObject);
begin
if Sender IS TButton then
NoteBook.PageIndex := NoteBook.PageIndex + (Sender AS TButton).Tag;

ButtonBack.Enabled := NoteBook.PageIndex > 0; { first }
if (NoteBook.PageIndex = 1) and ((Sender AS TButton).Tag = 1) then
BuildSQL;

Caption := Title + Format(' %d/%d', [NoteBook.PageIndex+1,
NoteBook.Pages.Count]);

if NoteBook.PageIndex < Pred(NoteBook.Pages.Count) then begin
ButtonNext.Caption := '&Next >';
ButtonNext.ModalResult := mrNone

end else begin
{ Finish }
ButtonNext.Caption := '&Finish';
ButtonNext.ModalResult := mrOk

end
end;

➤ Listing 1: ButtonStepClick

April 1998 The Delphi Magazine 37

➤ Figure 2

that the SQL Query should now be
executed and a list of field names
can be presented in a checklistbox
(so we can specify which fields are
relevant): see Figure 2.

The source code of BuildSQL
itself, which extracts the available
fieldnames from the Query without
actually executing the Query itself,
is shown in Listing 2. Note that we
also make sure that only parame-
terised query fields (using a colon
prefix) are pre-selected in the
checklist.

Unfortunately, checking for
parameterised fields in the Query’s
SQL statement is of no use at this
time, since we can’t execute a
Parameterised Query in the above
way. We need to specify the type of
each Parameter, or else we get an
exception. We’ll remedy this prob-
lem later, when we turn to Compo-
nent and Property Editors.

The final page in the wizard is
used to specify some CGI details,
such as the Action and Method, as
well as the Title (caption) we want
the HTML page to have and the file
to save the form in (Figure 3).

Once we’ve collected all infor-
mation from the three wizard
pages, the procedure Finish is rela-
tively straightforward. We need to
create an HTML file with a CGI form
inside, using <FORM ACTION=...
METHOD=...> and </FORM> tags. For
each selected fieldname of the
Query, we need to put every possi-
ble value from that field (as a
Query result) in a drop-down Com-
boBox, using <SELECT> and <OPTION>
tags. The HTML details are not
important right now. See Listing 3.

And that’s basically all there is to
it. The end result (unit DrBobWiz)
contains the building blocks for
the remainder of the article.

Stand-Alone?
The first thing to do is test the new
Query-2-HTML wizard as a stand-
alone executable (Listing 4). This
sure sounds like a useful utility to
have and Figures 1 to 3 were all
generated using this version.

Note that we don’t call proce-
dure Finish if the user simply
closes the wizard or clicks on the
Cancel button (which results in a
ModalResult of mrCancel).

procedure TFormWizard.BuildSQL;
var
i: Integer;

begin
CheckListFields.Items.Clear;
with TheQuery do begin
if ComboBoxAliases.Text <> '' then
DatabaseName := ComboBoxAliases.Text;

SQL := MemoSQL.Lines;
FieldDefs.Update { get info without executing TheQuery };
for i:=0 to Pred(FieldDefs.Count) do begin
CheckListFields.Items.Add(FieldDefs[i].Name);
{ only select the "parameterised" fields in the Query }
CheckListFields.Checked[i] :=
(Pos(UpperCase(':'+FieldDefs[i].Name),UpperCase(SQL.Text)) > 0) or
(Pos(UpperCase(':"'+FieldDefs[i].Name+'"'),UpperCase(SQL.Text)) > 0);

end
end

end {BuildSQL};

➤ Listing 2: BuildSQL

➤ Figure 3

38 The Delphi Magazine Issue 32

For the session that resulted in
Figures 1 to 3, the results are
shown in Listing 5: an HTML form
listing values of the Common_Name
field of the BIOLIFE.DB table . When
connected to a TQueryTablePro-
ducer, this could be used for a web
application where one could easily
select the Common_Name for which
more details should be returned.

Note that the items in the drop-
down ComboBox are not sorted
(Figure 4). This could easily be
fixed by adding ORDER BY
Common_Name to the SQL Query that
we defined in Figure 1.

Expert/Wizard?
While it’s certainly nice to have our
wizard as a stand-alone applica-
tion, let’s now focus on ways to
actually integrate it into the Delphi
IDE, so we can offer even more help
at design-time. Usually, the first
approach I use is to write a Delphi
IDE wizard ‘wrapper’ around it
(generated by my Wizard wizard,
see Issue 21).

For example, to create an AddIn
wizard that is inserted in the Data-
base menu after the Database Form
Wizard, I need to find the Borland_
FormExpertMenu menu item, get to
its parent menu and insert my own
menu item right after the index of
the former: see Listing 6.

In the OnClick event handler I call
the method Execute (which is also
used by the other three wizard

➤ Listing 3: Finish
program Test;
uses
Forms, Controls,
DrBobWiz in 'DrBobWiz.pas' {FormWizard};

begin
Application.Initialize;
with TFormWizard.Create(Application) do
try
if ShowModal = mrOK then Finish

finally
Free

end
end.

➤ Listing 4: Stand-Alone Test

<HTML>
<BODY>
<H1>Search Query</H1>
<HR>
<FORM ACTION="http://www.drbob42.com/cgi-bin/action.exe" METHOD=POST>

Common_Name:

<SELECT NAME="Common_Name">
<OPTION VALUE="Clown Triggerfish"> Clown Triggerfish
<OPTION VALUE="Red Emperor"> Red Emperor
<OPTION VALUE="Giant Maori Wrasse"> Giant Maori Wrasse
<OPTION VALUE="Blue Angelfish"> Blue Angelfish
<OPTION VALUE="Lunartail Rockcod"> Lunartail Rockcod
<OPTION VALUE="Firefish"> Firefish
<OPTION VALUE="Ornate Butterflyfish"> Ornate Butterflyfish
<OPTION VALUE="Swell Shark"> Swell Shark
<OPTION VALUE="Bat Ray"> Bat Ray
<OPTION VALUE="California Moray"> California Moray
<OPTION VALUE="Lingcod"> Lingcod
<OPTION VALUE="Cabezon"> Cabezon
<OPTION VALUE="Atlantic Spadefish"> Atlantic Spadefish
<OPTION VALUE="Nurse Shark"> Nurse Shark
<OPTION VALUE="Spotted Eagle Ray"> Spotted Eagle Ray
<OPTION VALUE="Yellowtail Snapper"> Yellowtail Snapper
<OPTION VALUE="Redband Parrotfish"> Redband Parrotfish
<OPTION VALUE="Great Barracuda"> Great Barracuda
<OPTION VALUE="French Grunt"> French Grunt
<OPTION VALUE="Dog Snapper"> Dog Snapper
<OPTION VALUE="Nassau Grouper"> Nassau Grouper
<OPTION VALUE="Bluehead Wrasse"> Bluehead Wrasse
<OPTION VALUE="Yellow Jack"> Yellow Jack
<OPTION VALUE="Redtail Surfperch"> Redtail Surfperch
<OPTION VALUE="White Sea Bass"> White Sea Bass
<OPTION VALUE="Rock Greenling"> Rock Greenling
<OPTION VALUE="Senorita"> Senorita
<OPTION VALUE="Surf Smelt"> Surf Smelt
</SELECT>

<P>
<CENTER><INPUT TYPE=RESET><INPUT TYPE=SUBMIT>
</FORM>
<HR>
Generated by QueryBob (c) 1998 by Bob Swart (aka Dr.Bob)
</BODY>
</HTML>

➤ Listing 5: BIOLIFE.HTM (output)

procedure TFormWizard.Finish;
var
f: System.Text;
Str: String;
i: Integer;

begin
begin
System.Assign(f,EditFileName.Text);
Rewrite(f);
writeln(f,'<HTML>');
writeln(f,'<BODY>');
writeln(f,'<H1>',EditTitle.Text,'</H1>');
writeln(f,'<HR>');
write(f,'<FORM ACTION="',EditAction.Text);
if RadioPost.Checked then
writeln(f,'" METHOD=POST>')

else
writeln(f,'" METHOD=GET>');

writeln(f,'');
with TheQuery do
try
if ComboBoxAliases.Text <> '' then
DatabaseName := ComboBoxAliases.Text;

Str := MemoSQL.Text;
{ ignore "WHERE" part of Query; generate all values }
if Pos('WHERE ',UpperCase(Str)) > 0 then
System.Delete(Str, Pos('WHERE ', UpperCase(Str)),
Length(Str));

SQL.Text := Str;
Open;
for i:=0 to Pred(CheckListFields.Items.Count) do

if CheckListFields.Checked[i] then begin
writeln(f,'',CheckListFields.Items[i],':');
writeln(f,'
<SELECT NAME="',
CheckListFields.Items[i],'">');

First;
while not Eof do begin
writeln(f,'<OPTION VALUE="', FieldByName(
CheckListFields.Items[i]).AsString, '"> ',
FieldByName(
CheckListFields.Items[i]).AsString);

Next
end;
writeln(f,'</SELECT>');
writeln(f,'<P>')

end;
writeln(f,'');
writeln(f,'<CENTER>');
writeln(f,'<INPUT TYPE=RESET>');
writeln(f,'<INPUT TYPE=SUBMIT>');
writeln(f,'</FORM>');
writeln(f,'<HR>');
writeln(f, 'Generated by QueryBob (c) 1998 ‘+
’by Bob Swart (aka Dr.Bob)');

writeln(f,'</BODY>');
writeln(f,'</HTML>');
Close

finally
System.Close(f);

end
end

end {Finish};

April 1998 The Delphi Magazine 39

types), and inside Execute I basi-
cally do the same as I did in the
stand-alone version: create the
TFormWizard, perform a ShowModal
and call Finish when needed: see
Listing 7.

When registered and installed
into a Delphi 3 package, this
TBAddInWizard successfully inte-
grates the wizard into the Delphi
IDE (right after the Table Form
Wizard in the Database menu). How-
ever, I do feel that we cannot really
speak about true integration here,
as there’s no connection to a TQue-
ryTableProducer or even a TQuery
component. While the wizard is
now started from the IDE, it’s still
as isolated from our web modules
project as before.

Component Editor?
Component editors, like wizards,
are used to enhance the Delphi IDE.
They are also derived from a single
base class where some abstract
methods need to be overridden
and re-defined in order to give the
component editor the desired
behaviour. Component editors are
always bound to a particular com-
ponent type (see Issue 8 for more
information).

Ideally, I would like to show the
wizard as a component editor
action for the TQueryTableProducer:
ie when I click with the right mouse
button on a TQueryTableProducer, I
would like to get a pop-up menu
that lists this wizard, among the
other actions that exist for a TQue-
ryTableProducer (such as the
Action Editor, for example).

The definition for a TQueryTable-
ProducerComponentEditor, derived
from the base class TComponentEdi-
tor (defined in DSGNINTF.PAS) is
shown in Listing 8.

GetVerbCount returns the number
of pop-up menu items for this
component editor, which should
be 1 (our wizard), which is the
result of a call to GetVerb. Like Get-
Verb, the ExecuteVerb method can
safely ignore the Index argument,
since we only have one Verb
defined: see Listing 9.

Note that this time we’re able to
extract actual information from the
TQueryTableProducer to ‘initialise’
the Query on the wizard. For

constructor TBAddInWizard.Create;
var
MainMenu: TIMainMenuIntf;
MainItem: TIMenuItemIntf;
MenuItem: TIMenuItemIntf;

begin
inherited Create;
NewMenuItem := nil;
if ToolServices <> nil then begin
MainMenu := ToolServices.GetMainMenu;
if MainMenu <> nil then { main menu }
try
MenuItem := MainMenu.FindMenuItem('Borland_FormExpertMenu');
if MenuItem <> nil then
try
MainItem := MenuItem.GetParent;
if MainItem <> nil then
try
NewMenuItem := MainItem.InsertItem(MenuItem.GetIndex+1,
'&Dr.Bob''s QueryBob Wizard...','BAddInWizard1','',
ShortCut(Ord('D'),[ssShift,ssAlt,ssCtrl]),0,0,
[mfEnabled, mfVisible], OnClick)

finally
MainItem.DestroyMenuItem

end
finally
MenuItem.DestroyMenuItem

end
finally
MainMenu.Free

end
end

end {Create};

➤ Listing 6: Create AddIn Wizard

procedure TBAddInWizard.Execute;
begin
with TFormWizard.Create(Application) do
try
if ShowModal = mrOK then Finish

finally
Free

end
end {Execute};

➤ Listing 7: Execute AddIn Wizard

example, we can access
the value of the QueryDa-
tabaseName, the Query.
SQL and even the Query.
Params (which is useful
for parameterised que-
ries, for which we previ-
ously could not offer
any support).

In fact, once we have a
Web Module project
with a Query connected
to a TQueryTablePro-
ducer, we can use the
Component of our compo-
nent editor (which is the
TQueryTableProducer) to
access its Query and
just grab anything we
need, without having to
fill this information in
(again) by ourselves.

So, ideally, we would start the
component editor and just click on
the Nextbutton twice, then provide
the form information on the last
page of the wizard and the Finish
action. Even the ‘parameterised
fields’ would automatically have

➤ Figure 4

been selected, as we already
showed in Listing 2 some time ago.

There is one big problem with
using the TQueryTableProducerCom-
ponentEditor, however: once we
install it, we effectively ‘hide’ the
previous component editor for
TQueryTableProducer, so we no

40 The Delphi Magazine Issue 32

longer have access to the Action
Editor, for example. This might not
be a very big problem (just unin-
stall the package that includes the
TQueryTableProducerComponentEdi-
tor and we then get the original
component editor back), but it
sure is not the most convenient
way to work.

The problem is actually caused
by the fact that we have no source
code for the ‘original’ TQueryTable-
Producer’s component editor, so
we cannot inherit from it and
simply add our new wizard to the
list of verbs. The original compo-
nent editor is probably part of a
design-time package and I can
understand why Borland isn’t
shipping source code for the
design-time packages.

Property Editor?
A wizard doesn’t give us true inte-
gration, and a component editor

type
TQueryTableProducerComponentEditor = class(TComponentEditor)
public
function GetVerbCount: Integer; override;
function GetVerb(Index: Integer): String; override;
procedure ExecuteVerb(Index: Integer); override;

end;

➤ Listing 8:

function TQueryTableProducerComponentEditor.GetVerbCount: Integer;
begin
Result := 1

end {GetVerbCount};
function TQueryTableProducerComponentEditor.GetVerb(Index: Integer): String;
begin
Result := 'Query-2-HTML CGI-Form Wizard...'

end {GetVerb};
procedure TQueryTableProducerComponentEditor.ExecuteVerb(Index: Integer);
begin
with TFormWizard.Create(Application) do
try
with (Component AS TQueryTableProducer) do begin
if Assigned(Query) then begin
ComboBoxAliases.Text := (Query AS TQuery).DatabaseName;
MemoSQL.Lines.Assign((Query AS TQuery).SQL);
if Assigned((Query AS TQuery).Params) then
TheQuery.Params.Assign((Query AS TQuery).Params)

end
end;
if ShowModal = mrOK then
Finish

finally
Free

end
end {Edit};

➤ Listing 9: ExecuteVerb Component Editor

costs us too much ‘original’ behav-
iour. So, what’s left? Property
editors, of course (see Issue 6 for
more information). Although this
isn’t an ideal solution either, as we
will see, it gives us the best of both
worlds: true integration without
too many costs.

We can write a property editor
for a specific property of the TQue-
ryTableProducer component. This
sounds ideal, but which property
should we use? The Query prop-
erty, while having the information
we need, already has its own prop-
erty editor and, like component
editors, it’s not possible to extend
the original functionality since we
don’t have the source code for the
Delphi IDE design-time packages.
As a matter of fact, I could not find a
single property of TQueryTablePro-
ducer that I could ‘reuse’ for our
purpose, so there was only one
option left: add a property of my

own to TQueryTableProducer. Unfor-
tunately, this also means I need to
create a new class, TBQueryTable-
Producer, derived from TQueryTa-
bleProducer, with the extra
property: QueryHTML (Listing 10).

For this new property QueryHTML
of type ShortString I can define a
special property editor, that will
show an ellipsis inside the Object
Inspector, and when we click on
that, it will perform just like the
component editor and wizard we
created before, see Listing 11.

The two methods from TQue-
ryHTMLProperty we need to over-
ride actually specify that we want a
dialog property editor (one that
shows an ellipsis, and will pop up a
dialog when we click on it): see
Listing 12.

GetComponent returns the Indexth
component being edited by this
property editor. This is used to
retrieve the TBQueryTableProducer
component itself, which holds the
Query property that we need to
inspect. Of course, a property
editor can only refer to multiple
components when paMultiSelect
is returned from GetAttributes,
which isn’t true in our case, so we
can just use GetComponent(0) and
see if the Query property is
assigned a value.

The final step involves register-
ing the new property editor, and
unlike the wizard and the compo-
nent editor we did before, this time
we also need to register a new com-
ponent TBQueryTableProducer, and
we need to specify that the new
property editor should only be
activated for the QueryHTML prop-
erty of a TBQueryTableProducer
component: see Listing 13.

The end-result works just like
the component editor, but at a
lower cost: the only side-effect this
time is the new property QueryHTML
in a new component TBQueryTable-
Producer (which is exactly the
same as the base class TQueryTa-
bleProducer, of course, apart from
the new property we have added).
Not a perfect solution, of course,
but at least it works without actu-
ally removing some other needed
functionality, such as the Actions
Editor in case of the component
editor.

type
TBQueryTableProducer = class(TQueryTableProducer)
private
FQueryHTML: ShortString;

published
property QueryHTML: ShortString read FQueryHTML write FQueryHTML;

end {TBQueryTableProducer};

➤ Listing 10:

April 1998 The Delphi Magazine 41

Package!
So far, we’ve created four units:
One to hold the wizard code, one
for the wizard wrapper, one for the
component editor wrapper, and
one for the property editor wrap-
per. Time to wrap things up in one
package (pun intended). Packages
(see Issue 23) are a convenient way
to put all these Delphi IDE exten-
sions together. Of course, you’re
free to remove the ones you don’t
want (such as the component
editor), but after you’ve re-
compiled the package, you only
need to copy it to the Delphi 3 BIN
directory and install it (use the
Component | Install Packages
menu) to have the Query-2-HTML
CGI-Form Wizard available at
design-time whenever you need it:
see Listing 14.

The only thing left is showing
how to actually use the result
together with a Delphi 3 Web
Module project: the reason we
started this utility in the first place.

Usage
Start a new Web Module project
and drop a TBQueryTableProducer
from the internet tab on the Web
Module. This control will get con-
nected to a parameterised query
and generate the dynamic HTML
pages from the query result. Right
next to the TBQueryTableProducer
component, we need to put a
TQuery component. Set the Data-
baseName property to DBDEMOS and
enter the following text in the SQL
property:

SELECT * FROM BIOLIFE WHERE
(BIOLIFE."Common_Name" =
:"Common_Name")

I always give the parameter the
same name as the field it connects
to, so it’s easier to remember (and
also easier to convert).

The above parameterised query
will return all fields for every
record in BIOLIFE where the field
Common_Name is equal to a runtime
specified common name, as
passed in parameter Common_Name.
Next, we need to specify the type of
this parameter by clicking on the
Params property in the Object
Inspector. The type is String, and

type
TQueryHTMLProperty = class(TStringProperty)
public
function GetAttributes: TPropertyAttributes; override;
procedure Edit; override;

end;

➤ Listing 11:

function TQueryHTMLProperty.GetAttributes: TPropertyAttributes;
begin
Result := [paDialog]

end {GetAttributes};
procedure TQueryHTMLProperty.Edit;
begin
with TFormWizard.Create(Application) do
try
with (GetComponent(0) AS TQueryTableProducer) do begin
if Assigned(Query) then begin
ComboBoxAliases.Text := (Query AS TQuery).DatabaseName;
MemoSQL.Lines.Assign((Query AS TQuery).SQL);
if Assigned((Query AS TQuery).Params) then
TheQuery.Params.Assign((Query AS TQuery).Params)

end
end;
if ShowModal = mrOK then begin
SetValue(EditFileName.Text);
Finish

end
finally
Free

end;
Modified

end {Edit};

➤ Listing 12: Property Editor

procedure Register;
begin
RegisterComponents('internet',[TBQueryTableProducer]);
RegisterPropertyEditor(TypeInfo(ShortString), TBQueryTableProducer,
'QueryHTML', TQueryHTMLProperty)

end {Register};

➤ Listing 13:

there is no default value. We can
test the SQL syntax by double-
clicking on the Active property of
the TQuery component. If it gets set
to True we’ve built a valid SQL
query.

Now that we’ve entered the
Query, it’s time to connect it to the
TBQueryTableProducer. Just click on
the TBQueryTableProducer compo-
nent on the Web Module, go to the
Object Inspector, and set the Query
property to Query1. Now the TBQue-
ryTableProducer will use the result-
ing database of the TQuery to
generate the dynamic HTML pages.
And that’s not all. The TBQueryTa-
bleProducer is not only able to get
the TQuery result, it is also able to
set the Query input parameters
(Common_Name in our case).

This is where our Query-2-HTML
CGI-Form converter comes in.
Based on the information specified
in the TQuery component, we can
now generate an HTML CGI-Form

package BobWeb30;
{$DEBUGINFO OFF}
{$LOCALSYMBOLS OFF}
{$LONGSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$STACKFRAMES OFF}
{$REFERENCEINFO OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$IMAGEBASE $00400000}
{$DESCRIPTION 'Dr.Bob''s Web Module
Enhancements'}

{$DESIGNONLY}
{$IMPLICITBUILD ON}
requires
vcl30,
VCLX30,
VCLDB30,
INETDB30,
INET30;

contains
QueryBob, { IDE Expert/Wizard }
DrBobCED, { Component Editor }
DrBobWeb, { Property Editor }
DrBobWiz;

end.

➤ Listing 14: BobWeb30 Package

that contains an INPUT field with
name Common_Name (ie the name of
the parameter inside the Query).
Whenever the data from the form
is sent to the web application, a

42 The Delphi Magazine Issue 32

match is made between the INPUT
field names and the Query parame-
ter names. If a match is found, the
value of the INPUT field is substi-
tuted for the Query parameter. In
our case, we just generate a simple
CGI form that contains an INPUT
field with the name Common_Name to
hold the Common Names of the
fish from the BIOLIFE table.

If we click in the Object Inspector
on the ellipsis for the QueryHTML
property, we get our wizard, only
this time it can extract all required
information from the TQuery itself,
including the parameterised query
and all its parameters (Figure 5).

All we need to do now is create a
default WebActionItem, and make
sure the OnAction event contains
the code in Listing 15 to redirect
output from the TBQueryTable
Producer to the final output of the
web application. As long as we
remember to keep the Active prop-
erty of the Query set to True, we
don’t need to write any more code.

Home Improvements
Now that we have a tool to gener-
ate a static HTML form for query

support, it occurs to me that it
might be useful to be able to gener-
ate this form dynamically as well.
Since tables can change, this may
solve the potential problem of
looking for a Common_Name, which
isn’t in the database anymore.

Generating the HTML form
dynamically shouldn’t be hard to
do, given the ‘building blocks’ we
now have. We must add a special
action to our Web Module, which
then generates the HTML form,

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := BQueryTableProducer1.Content;

end;

➤ Listing 15:

➤ Figure 5

instead of pointing to a static copy
on the net. The only problem I can
see would be how to determine
which fields to include in the gen-
erated form. But maybe that can be
specified in the ‘mother of all
queries’ form, in which one could
specify the table and fields.

I’m still not happy that we ended
up with a property editor instead
of a component editor for TQuery-
TableProducer. I’m hoping that I’ll
get a clue (email bob@bolesian.nl)
to help me solve it...

Next Time, Dr.Bob Says...
There are a number of web pages
on my bookmark list that I plan to
visit regularly. But sometimes I
just don’t have the time and so
may miss an important announce-
ment. At other times I do visit a site
but nothing has changed. Ever had
this experience? Let me rephrase
that last question: What do the
internet, Intelligent Agents, Delphi
and Dr.Bob have in common?
Learn the answer next time when a
new internet ‘searching’ tool is
born called... RobotBob.

Bob Swart (aka Dr.Bob, www.
drbob42.com) is a professional
knowledge engineer technical
consultant using Delphi,
C++Builder and JBuilder for
Bolesian, a freelance technical
author and co-author of the
web-based Delphi Internet
Solutions knowledgebase.

	CGI-Forming
	Query-2-HTML
	Stand-Alone?
	Expert/Wizard?
	Component Editor?
	Property Editor?
	Package!
	Usage
	Home Improvements
	Next Time, Dr.Bob Says...

